

CCS@Lexington, October 16, 2017

Olfa Nasraoui

This work is a Collaboration with:

Behnoush Abdollahi, Mahsa Badami, Sami Khenissi, Wenlong Sun, Gopi Nutakki, Pegah Sagheb: @UofL

& Patrick Shafto: @Rutgers-Newark

Knowledge Discovery & Web Mining Lab

Computer Engineering & Computer Science Dept.

University of Louisville

http://webmining.spd.louisville.edu/

olfa.nasraoui@louisville.edu

Acknowledgements:

National Science Foundation:

NSF INSPIRE (IIS)- Grant #1549981

NSF IIS - Data Intensive Computing Grant # 0916489

Kentucky Science & Engineering Foundation: KSEF-3113-RDE-017

Outline

- What can go Wrong in Machine Learning?
 - Unfair Machine Learning
 - o Iterated Bias & Polarization
 - Black Box models
- Tell me more: Counter-Polarization
- Tell me why: Explanation Generation

"Twitter and Facebook can't predict the election, but they did predict what you're going to have for lunch: a tuna salad sandwich."

- We are relying on Machine Learning (ML) algorithms to support decisions:
 - Recommender Systems:
 - They guide humans in discovering only a few choices from among a vast space of options
 - Choose among options: Reading the News, Watching movies, Reading books, Discovering friends, Dating, Marriage, etc
 - Supervised Learning:
 - Predict class label for given instance
 - Example of label: whether to approve a loan, etc
 - Credit Scoring, Criminal investigation, Justice, Healthcare,
 Education, Insurance risk modeling, etc

Real life data can include **biases** that can affect the predictions

- May result in unfair ML models
 - discriminative,
 - unreasonable,
 - biased...
 - worse when models are opaque/black box!

- Increasing (unchecked) Human-ML algorithm interaction...
 - Think about Recommender Systems
 - They guide humans in discovering only a few choices from among a vast space of options
 - Why are they needed?
 - Information Overload ⇒ need Relevance Filters!
 - But ...
 - could result in hiding important information from humans
 - could exacerbate polarization around divisive issues
 - could fail to explain why they recommend a particular choice (Black Box models: e.g, Matrix Factorization, Deep Learning)

Increasing unchecked Human-ML algorithm interaction...

Need for:

- Understanding Impact of interaction
- Limiting or reversing biases
 - ⇒ Tell Me More!
- Adding Transparency / Explanations
 - to scrutinize biased or incorrect predictions
 - ⇒ more trust in ML models!
 - ⇒ Tell Me Why?

Outline

- What can go Wrong in Machine Learning?
 - Unfair Machine Learning
 - Iterated Bias & Polarization
 - Black Box models
- Tell me more: Counter-Polarization
- Tell me why: Explanation Generation

Iterated Bias

Machine Learning: Now & Then...

- In the past, Machine learning algorithms relied on reliable labels from experts to build predictive models.
 - **Expert** users, **limited** data, **reliable** labels
- **Today**, algorithms receive data from the **general population**
 - Labeling, annotations, etc.
 - Everybody is a user, Big Data, subjective labels
- **Labeled** Data (User **Relevance labels**)
 - ⇒ Machine Learning Models
 - ⇒ Filtering of information visible to the user
 - ⇒ Next Labeled Data
 - ⇒ Next ML Model

... etc

Recommender Systems

Collaborative Filtering

Uses previous ratings of the user to predict future preferences

Recommender Systems ⇒ Iterated Bias

interaction between user & algorithm

Impact of Iterated Bias on Predicted Ratings

- Collaborative Filtering Simulation: Item-based, U=100, N=200
- Gini Index of the rating distributions vs iterations between rater and algorithm

- <u>Feedback loop</u> / interaction between rater and recommender
 - ⇒ Increases the divergence between ratings (Likes / Dislikes)
 - ⇒ We are witnessing the birth of polarization

Note: Existing public benchmark data sets are useless for studying this problem!

- (1) they do not record every interaction
- (2) they do not have the absolute user preference on each item!

⇒ Need Benchmark human choice and rating cognitive models! (Shafto & Nasraoui, 'Human-Recommender System' RecSys 2016)

Polarization & Counter-Polarization in Recommender Systems

Positive Feedback Loop

Positive Feedback Loop

Positive Feedback Loop

Filter Bubble

Filter Bubble

Self-fulfilling Identity

Consequences

Over Specialization

User Unsatisfaction

Polarization

Misperceiving Facts

Deconstructing non-prevailing views, opinions and behaviors

Extreme Attitudes

It gets worse in a *Polarized* environment!

Definition of POLARIZATION

a (1): the action or process of affecting radiation and especially light so that the vibrations of the wave assume a definite form (2): the state of radiation affected by this process

b: an increase in the resistance of an electrolytic cell often caused by the deposition of gas on one or both electrodes

C: MAGNETIZATION

a: division into two opposites

b: concentration about opposing extremes of groups or interests formerly ranged on a continuum

Polarization

Our survey ⇒

The field of polarization is rather not unified in

how polarization is defined?

- what is done after recognizing it?almost nothing...

Basic Polarization Taxonomy

- Social Polarization: how people congregate with one another,
- Written Polarization: how people write about topics,
- 3. Rated and Recommended Polarization: how people behave, consume and express their preferences,

How they <u>interact</u> with <u>algorithms</u>.

Basic Polarization Taxonomy

- 1. Social Polarization: how people congregate with one another,
- Written Polarization: how people write about topics,
- 3. Rated and Recommended Polarization:

how people behave, consume and express their preferences:

How they interact with algorithms

What can we do about it?

Polarization Detection Classifier - PDT

Data Science Pipeline:

- Data-driven problem formulation
- Feature engineering
- Modeling
 - Training a classifier using rating data
 - Polarization Score = predicted probability of belonging to the polarized class
- Evaluation
- Interpretation

Recommender System Counter Polarization Methods: RS-CP

Pre-recommendation Countering Polarization - PrCP

Why do we need it?

- Changing the Recommender System algorithm may not be always feasible
 - Black box
 - or too complex to modify ...

What do we do?

- Transform the source data to mitigate extreme ratings that make an item polarized.
- Take into account the user's relative preferences,
 - yet **reduce extreme recommendation** that can be generated from a standard recommender system algorithm.

Pre-recommendation -based Countering Polarization - PrCP

Mapping Function:

$$f:(U,I,R)\to (U,I,R')$$
 with probability of p

Polarization-aware Recommender Interactive System - PaRIS

Goal:

Design a recommendation system which not only recommends **relevant items**

but also may include opposite views

in case the user is interested to discover new items

Polarization-aware Recommender Interactive System - (PaRIS)

Goal: Design a recommendation system which not only recommends **relevant** items but also includes **opposite views** in case the user is **interested** to **discover new items**.

Our Baseline: Non-negative Matrix Factorization (NMF)-based recommender systems:

- Good scalability
- High predictive accuracy
- Flexibility for modeling various real-life situations
- Easy incorporation of additional information

NMF: Matrix Factorization (Koren et al - 2009)

Input: Rating matrix

Idea: Learn p and q to predict all values of the rating matrix

• p and q are the representation of the user u and item v in a latent space.

$$r_{uv} = q_v^T * p_u$$

Learning process:

$$\min_{P,Q} = \sum_{(u,v)\in R} (r_{uv} - q_v^T p_u)^2 + \lambda (\|(q_v^2\| + \|(p_u^2\|))^2)$$

Polarization-aware Recommender Interactive System - PaRIS

$$\min \left(1-\lambda_i\right) \times ||r_{ij}-p_iq_j||^2 + \lambda_i \times ||r'_{ij}-p_iq_j||^2$$

$$r'_{ij}=r_{ij}-(\bar{r}+g_i) \times \Phi_j^{\lambda_i+r_{ij}} \quad \text{if } r_{ij} \text{ is } \geq \delta$$

$$r'_{ij}=r_{ij}+(\bar{r}-g_i) \times \Phi_j^{\lambda_i+r_{ij}} \quad \text{if } r_{ij} \text{ is } < \delta$$
 User Discovery Factor User Preference Threshold Polarization Score

Experiments

Definition 3: Let the number of users, |U| = n and number of items, |I| = m. A recommender system algorithm takes environment G as input along with a user $u \in U$, and outputs a set of items $i_1, ..., i_k, \in I$.

Fully Polarized Environment

Partially Polarized Environment

NMF: Fully Polarized Environment

- It is <u>easy</u> and <u>fast</u> to learn <u>discriminating</u> models in a polarized environment!
 - The result: Keep each user in the safety of their preferred viewpoint

Extreme Polarization!!

Effect of Increasing Polarization on NMF

Effect of Polarization on NMF 500 Polarization Rate:0 Polarization Rate: 0.2 Polarization Rate: 0.4 450 Polarization Rate: 0.6 Polarization Rate: 0.8 Polarization Rate:1 400 350 300 250 200 50 100 150 200 250 300 **Gradient Descent Iteration**

Can <u>monitor</u> convergence trend to <u>detect</u> emergence of polarization!!

Counter Polarization Methods: Recommend <u>More</u> Items from Opposite View

		Opposite View Ratio		Mean Square	
		OVHR _u	OVHR _{tk}	MSE _{Train}	MSE _{Test}
		mean, std	mean, std	mean, std	mean, std
Classic NMF		$0.0\% \pm 0.00$	$0.0\% \pm 0.00$	22.02 ± 5.27	138.96 ± 12.55
PrCP	$\lambda_i = 0.2$	$5.4\% \pm 0.073$	12.32±0.31	123.92 ± 36.76	813.01 ± 36.76
	$\lambda_i = 0.5$	$6.0\% \pm 0.08$	18.1%±0.21	124.46 ± 37.29	299.82 ± 76.01
	$\lambda_i = 0.7$	$61.0\% \pm 0.17$	$31.0\% \pm 0.167$	209.73 ± 59.53	967.103 ± 145.92
	$\lambda_i = 1.0$	67.0% ± 0.24	68.0% ± 0.24	361.77 ± 102.74	1883.50 ± 237.83
PaRS	$\lambda_i = 0.2$	5.4% ± 0.73	$4.9\% \pm 0.021$	123.92 ± 36.76	813.01 ± 36.76
	$\lambda_i = 0.5$	$6.2\% \pm 0.075$	$5.2\% \pm 0.042$	122.56 ± 39.081	804.01 ± 75.88
	$\lambda_i = 0.7$	$7.0\% \pm 0.075$	$5.4\% \pm 0.033$	120.97 ± 35.19	803.65 ± 64.65
	$\lambda_i = 1.0$	$6.8\% \pm 0.064$	$5.8\% \pm 0.03$	119.76 ± 34.93	801.86 ± 65.07

Conclusion

★ Iterated Learning Bias: theory and simulations

★ Counter-polarization

- Empower the users who are increasingly entrapped in algorithmic filters
- Allows humans to regain control of algorithm-induced filter bubble traps,
- Impact on information filtering / recommender systems
 - News, social media, e-commerce, e-learning, etc

- ★ We uncovered patterns that are characteristic of environments where polarization emerges
 - Can monitor objective function optimization trend
 - ⇒ detect and quantify the evolution of polarization
- ★ ⇒ allow users to <u>break free from their algorithmic</u>
 <u>chains!</u>

Outline

- What can go Wrong in Machine Learning?
 - Unfair Machine Learning
 - o Iterated Bias & Polarization
 - Black Box models
- Tell me more: Counter-Polarization
- Tell me why: Explanation Generation

Why is Explainability So Important?

Transparency is crucial to scrutinize:

- incorrect predictions
- biased predictions

More trustworthy ML models!

Black Box vs. White Box

- Black Box (opaque) predictors such as Deep learning and matrix factorization are accurate,
 - but lack interpretability and ability to give explanations
- White Box models such as rules and decision trees are interpretable (explainable)
 - ... but lack accuracy
- Explanations provide a rationale behind predictions
 - → help the user gauge the validity of a prediction
 - → may reveal prediction errors and reasons behind errors
 - → increase trust between human and machine

Our Focus: Explanations in Recommender Systems

Recommender Systems

Collaborative Filtering

Uses previous ratings of the user to predict future preferences

Tradeoff between Accuracy and Explainability

- Using Explanations, we can increase the transparency of the model.
- However there may be a downside:
 - Explainable models should also remain accurate!

Goal: a moderate tradeoff between accuracy and explainability

MF: Matrix Factorization (Koren et al - 2009)

Input Data: Rating matrix

Idea: Learn p and q to predict all missing values of the rating matrix p and q = representation of user u and item v in a latent space.

$$r_{uv} = q_v^T * p_u$$

Learning process:
$$\min_{P,Q} = \sum_{(u,v) \in R} (r_{uv} - q_v^T p_u)^2 + \lambda (\|(q_v^2\| + \|(p_u^2\|))^2 + \lambda (\|q_v^2\| + \|q_v^2\|)^2 + \lambda (\|q_v^2\| + \|q_v^2\| + \|q_v^2\|)^2 + \lambda (\|q_v^2\| + \|q_v^2\| + \|q_v^2\|)^2 + \lambda (\|q_v^2\| + \|q_v^2\| + \|q_v^2\| + \|q_v^2\|)^2 + \lambda (\|q_v^2\| + \|q_v^2\| + \|q_v^2\|$$

Main Problem: Matrix Factorization is a Black Box Model

EMF: Explainable Matrix Factorization (Abdollahi & Nasraoui, 2016)

Idea: Provide neighborhood style Explanations along with recommendations and learn a model that is explainable

Recommendation:

Justification:

80% of users who share similar interests with you liked this movie

New objective function:

$$J = \sum_{(u,v)\in R} (r_{uv} - q_v^T p_u)^2 + \frac{\beta}{2} (\|p_u^2\| + \|q_v^2\|) + \frac{\lambda}{2} (p_u - q_v)^2 W_{uv}$$

 W_{uv} = Explainability score calculated for user u and item v.

Explainability term to favor users and items with similar p and q

$$W_{uv} \begin{cases} \frac{|N'(u)|}{|N'_k(u)|} if \frac{|N'(u)|}{|N'_k(u)|} > \theta; \\ 0 \qquad Otherwise; \end{cases}$$

- N': total number of neighbors of user *u* who rated item *v*
- N'_{k} : total number of neighbors of user u

Classical Framework

Classical Framework

Classical Framework vs Proposed Framework

58

Intuition

Intuition

Intuition: Bring explainable items closer to the user in latent space

Active Learning

What If we make the algorithm <u>choose</u> the most useful training data?

ExAL: Explainable Active Learning

- 1. Select items from an unlabeled pool of items using an **Active Learning** selection strategy
- 2. Obtain the true ratings of the selected item from the new user
- 3. Adjust the parameters of the model using the new ratings
- 4. Repeat the process until meeting a stopping criterion

Active Learning

Recommender System

Ask for ratings for selected items

Active Learning

Recommender System

Recommender System

Active Learning to improve explainability in MF

Problem:

How are we going to select the best items to be queried to the user?

Selection Criterion

Active Learning to improve explainability in MF

Proposition: A selection criterion for EMF to minimize testing error and increase explainability for user u:

i* such that:

$$i_u^* \simeq \underset{i \in I_{pool}^u}{\operatorname{argmin}} \sum_{j \in I_{test}^u} \left| 1 - r_{uj} + 2\alpha((r_{ui} - \bar{R}_i) \sum_{f=1}^k q_{if}q_{jf} + \lambda W_{ui}(r_{uj} - \sum_{f=1}^k q_{if}q_{jf})) \right|$$

Index of the item that will be queried from the user

Expected change in the accuracy of the testing error

Explainability term that takes into consideration explainability as a selection criterion

71

Explainability F-score

Predictive Error (MAE)

Summary of Explainable Recommender Systems

- EMF: Explainable Matrix Factorization
 - Explainable Latent Factor Model
- ERBM: Explainable Restricted Boltzman Machines for Recommender Systems
 - Explainable Deep Learning Approach for Collaborative Filtering
- o Both EMF and ERBM:
 - improve explainability
 - without significant loss in accuracy
- ExAL: An Active learning approach to Explainable Recommendations
 - improves explainability <u>and</u> accuracy

References

- Kirby, Simon, Tom Griffiths, and Kenny Smith. (2014) "Iterated learning and the evolution of language."
 Current opinion in neurobiology 28: 108-114.
- Nasraoui, O. & Shafto, P. (2016). Human-algorithm interaction biases in the Big Data cycle: A Markov Chain Iterated Learning framework. arXiv preprint arXiv:1608.07895.
- Shafto, P. & Nasraoui, O. (2016). Human-recommender systems: From benchmark data to benchmark cognitive models. Proceedings of the 10th ACM Conference on Recommender Systems (RecSys 2016), 127-130
- Abdollahi, Behnoush, and Nasraoui, Olfa. (2016). Explainable Matrix Factorization for Collaborative Filtering."In Proceedings of the 25th International Conference Companion on World Wide Web. International World Wide Web Conferences Steering Committee.
- Abdollahi, Behnoush, and Nasraoui, Olfa. (2016). Explainable Restricted Boltzmann Machines for Collaborative Filtering." ICML Workshop in Human Interpretability.
- D. D. Lee and H. S. Seung, (2001). "Algorithms for non-negative matrix factorization," Advances in neural information processing systems, pp. 556–562.
- Abdollahi, Behnoush, and Nasraoui, Olfa. (2017). Explainable "Using Explainability for Constrained Matrix Factorization", Proceedings of the 11th ACM Conference on Recommender Systems (RecSys 2017).
- Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-Thieme, L. (2011b). Towards optimal active learning for matrix factorization in recommender systems. In Proceedings of the 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.
- Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems.
 Computer, 42(8).

Thank You!

CCS@Lexington, October 16, 2017

Olfa Nasraoui

This work is a Collaboration with:

Behnoush Abdollahi, Mahsa Badami, Sami Khenissi, Wenlong Sun, Gopi Nutakki, Pegah Sagheb: @UofL

& Patrick Shafto: @Rutgers-Newark

Knowledge Discovery & Web Mining Lab

Computer Engineering & Computer Science Dept.

University of Louisville

http://webmining.spd.louisville.edu/

olfa.nasraoui@louisville.edu

Acknowledgements:

National Science Foundation:

NSF INSPIRE (IIS)- Grant #1549981

NSF IIS - Data Intensive Computing Grant # 0916489

Kentucky Science & Engineering Foundation: KSEF-3113-RDE-017

